Some matrices associated with the split decomposition for a Q-polynomial distance-regular graph
نویسنده
چکیده
We consider a Q-polynomial distance-regular graph Γ with vertex set X and diameter D ≥ 3. For μ, ν ∈ {↓, ↑} we define a direct sum decomposition of the standard module V = CX, called the (μ, ν)–split decomposition. For this decomposition we compute the complex conjugate and transpose of the associated primitive idempotents. Now fix b, β ∈ C such that b 6= 1 and assume Γ has classical parameters (D, b, α, β) with α = b− 1. Under this assumption Ito and Terwilliger displayed an action of the q-tetrahedron algebra ⊠q on the standard module of Γ. To describe this action they defined eight matrices in MatX(C), called A, A, B, B, K, K, Φ, Ψ. For each matrix in the above list we compute the transpose and complex conjugate. Using this information we compute the transpose and complex conjugate for each generator of ⊠q on V .
منابع مشابه
The Displacement and Split Decompositions for a Q-Polynomial Distance-regular Graph
Let Γ denote a Q-polynomial distance-regular graph with diameter at least three and standard module V . We introduce two direct sum decompositions of V . We call these the displacement decomposition for Γ and the split decomposition for Γ. We describe how these decompositions are related.
متن کاملA duality between pairs of split decompositions for a Q-polynomial distance-regular graph
Let Γ denote a Q-polynomial distance-regular graph with diameter D ≥ 3 and standard module V . Recently Ito and Terwilliger introduced four direct sum decompositions of V ; we call these the (μ, ν)–split decompositions of V , where μ, ν ∈ {↓, ↑}. In this paper we show that the (↓, ↓)–split decomposition and the (↑, ↑)–split decomposition are dual with respect to the standard Hermitian form on V...
متن کاملOPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of th...
متن کاملOn Q-Polynomial Association Schemes of Small Class
We show an inequality involving the third largest or second smallest dual eigenvalues of Q-polynomial association schemes of class at least three. Also we characterize dual-tight Q-polynomial association schemes of class three. Our method is based on tridiagonal matrices and can be applied to distance-regular graphs as well.
متن کاملOPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 30 شماره
صفحات -
تاریخ انتشار 2009